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Abstract. The Monet parallel database server is an experimentation
platform for a variety of datamodels and novel applications. In this pa-
per we describe its active behavior based on the notion of trigger ab-
stractions and an event notification scheme. Trigger abstractions can be
used to construct intricate trigger instance networks. The events notified
in the DBMS kernel threads flow into a shared event pool. The trigger-
event-monitor watches this pool for event combinations to enable trigger
firing. We illustrate how these concepts can be used by a rule compiler
and describe a performance metric to guide the search for an efficient
architectural solution.

1 Introduction

Recent years have shown an increased research interest in active database sup-
port [15]. The stream of publications find their origin in the area of rule-based
programming [7], i.e. rule processing, and transaction management [14]. The for-
mer looks for better ways of rule processing in knowledge intensive applications.
The latter aims at simplified transaction management of complex business envi-
ronments through database triggers [14]. Rules and triggers are the declarative
and procedural ends of active behavior which require comparable measures for
their implementation.

Generic solutions to both dimensions are sought in the design and imple-
mentation of active databases, i.e. a database system that responds to events
generated internal or external to the system by activation of a routine. Event-
Condition-Action rules form the key procedural concept for specifying active be-
havior and the approaches taken primarily differ in their choice of abstractions
for the components involved. The Event, Condition, and Action components are
either explicitly used in the interface language or hidden behind a declarative
fagade and derived by a rule compiler. A classification of systems against several
dimensions is given in [11, 13].

The main contributions of this paper are twofold. First, we present an overview
of trigger implementation in Monet, a parallel DBMS kernel under development
since 1993 [2]. ! It complements earlier approaches in aiming for a re-targetable
active kernel in a truly parallel setting. We strongly believe that rule-based

! The work is in part sponsored by Stichting Informatica Onderzoek Nederland (SION)
and European Union (Pythagoras EU 7091).



systems should be built around an optimizing compiler that can exploit the
model/language semantics. Such a compiler relies on triggers that can be effi-
ciently implemented within a database kernel. The Monet extension presented is
geared towards providing this functionality. It is designed around a minimal set
of orthogonal concepts, primarily dealing with event streams,; trigger abstrac-
tions and their management in a parallel setting.

Active behavior is modelled as procedures, whose bodies are (repeatedly)
executed when their event condition holds. A trigger admission policy detects
(and rejects) trigger instances whose firing state can not be reached. This leads
to early warning of 'useless’ active triggers and aids the design of active appli-
cations. Furthermore, the DBMS primitives for queue management supports all
coupling modes at any level of precision required, such as parallel execution of
the actions. Together they provide the building blocks for code generation by a
rule compiler.

Second, we demonstrate the performance of our prototype implementation
using a benchmark core. This benchmark is our driving force for finding effi-
cient implementation techniques. The results obtained form a reference point
for quantitative comparison with other systems.

The remainder of this paper is organized as follows. Section 2 provides an
architectural overview of the Monet DB kernel and choices mode for active be-
havior. Section 3 describes the event and trigger model. Applicability of the
model is presented in Section 4 and the performance metric is presented in Sec-
tion 5. An outlook on future research activities concludes the paper.

2 Architectural Overview.

In section 2.1 we give an overview of the Monet system architecture [2]. 2 The
design considerations for inclusion of active behavior are sumarized in Section
2.2. A more detailed description is given in the remainder of this paper.

2.1 Monet Architecture

Monet is a customizable database system developed at CWI and University of
Amsterdam, intended to be used as the database back-end for widely varying
application domains. It is designed to get maximum database performance out
of today’s workstations and multiprocessor systems. It has already achieved con-
siderable success in supporting a Data Mining application [8], and work is well
under way in a project where it is used in a high-end GIS application. Monet
is a type- and algebra-extensible database system and employs shared memory
parallelism of SGIs and SUNs. The distributed store version based on [1] is under
development and targeted at an IBM SP1 multiprocessor.
The principal assumptions and ideas to achieve Monet’s design goals are:

2 For more details on Monet and related projects, see
http://www.cwi.nl/cwi/projects/monet.html



— Use large main memories Monet makes aggressive use of main memory by
assuming that the database hot-set fits into main memory. All its primitive
database operations work primarily on main memory structures, no hybrid
(memory-disk) algorithms are used. For large data sets it fully exploits the
virtual memory manager capabilities of the underlying operating system.

— Decomposed storage model with deltas. Monet uses a simple data model
based on Binary Association Tables (BATs). This allows for flexible object-
representation using the Decomposed Storage Model (DSM)[10]. This verti-
cal decomposition also helps partitioning the database such that the tables
fit easier in main memory. Moreover, the BATs come with a delta facility,
providing access to all elements added (alpha) and deleted (delta) since
transaction begin.

— Extensible interface. The Monet Interface Language (MIL) provides for an
execution-level binary table algebra and a complete set of imperative pro-
gramming constructs. Furthermore, the Monet Extension Language (MEL)
permits extension of the core functionality through abstract data types and
user-defined commands. Such extensions can be dynamically added to a run-
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Fig. 1. The Monet Architecture

Figure 1 shows the Monet Interpreter as a multi threaded process, connected
to its clients via TCP/IP links. The basic interaction is through the Monet Inter-
face Language (MIL), a simple C-like scripting language. Applications typically



accompany themselves by a specific extension module, which provides the extra
functionality needed. Extension modules provide operations ranging from arith-
metic operations on BATs, geometric library for GIS, to statistical routines for
data mining.

2.2 Options for Active Behavior

An active database management system is build around events, event detectors,
a trigger definition language, and a trigger-event-monitor (TEM). Events are the
smallest pieces of information emitted from a system to ’trigger’ active behavior
upon detection by a trigger-event-monitor. In designing an architecture for a
wide spectrum of active models it is mandatory to take the following considera-
tions into account:

to differentiate enough DBMS kernel events;

to avoid excessive overhead in their detection;
— to avoid a complex analysis to determine the eligible ECA-rule(s);

to aim for a simple and open execution model;
— to provide hooks and tools for debugging and performance assessment.

These considerations have been taken into account during system design
and experimentation. The baseline has been to consider active behavior a well-
identified layer around the physical database and its algebraic engine. This way
experimentation with different data and execution models becomes feasible. To
set the stage, a short overview of the Monet active behavior is given first.

Event notification Active behavior starts with explicit notification of an event
at some point in the system code. Therefore, event detectors are hardwired at
specific places in the system kernel, while user-defined events are raised explicitly
by user-supplied code. For example, NAOS [3] and SAMOS [5] uses a compiled
approach where methods are wrapped by event notification code. This gives the
compiler designer and user precise control over the granularity required.

In the Monet architecture there are two obvious places for event notification.
Either notification takes place within the database kernel routines or within the
MIL interpreter. The former leads to fine-grained event detection with the disad-
vantage of processing overhead due to generating events under all circumstances.
Attachment routines to the storage manipulation operations (e.g. Starburst) only
marginally improve the situation, because checking for such attachments con-
sumes recognizable time in a main-memory oriented DBMS.

We have chosen for an flexible approach where event notification is coupled
with the operations known by the MIL interpreter. Depending on the mapping
from MIL operation to kernel operation this results in fine- or coarse- grain event
notification. Furthermore, the extensibility of Monet permits the user to refine
any MIL operation to provide a different event notification policy.



Event properties An event comes with properties to identify its environment
such that a decision can be made on the old- and new- value of the objects
affected or the table with net-effects. In SAMOS the event structure contains the
time of the occurrence, the enclosing transaction identifier, and user responsible
for its initiation. The event records are represented by persistent objects in the
server, which makes them accessible to an object browser.

The Starburst system takes a hybrid approach. Each triggering event places
a parameterized procedure call on the prepare-to-commit queue through its at-
tachment mechanism. Moreover, the transaction log keeps track of the net-effect
of successive transitions. The log, however, is difficult to analyse with the stan-
dard tools offered.

Our approach is to store all event properties within the database. An object
identifier is used to re-locate these properties later on. Furthermore, the primitive
data structures are set up such that old- and new- values can always be obtained;
independent of active behavior. A consequence of our Spartan approach is a
potentially higher workload on the kernel, because more query interactions are
required to determine the outcome of the condition part. The benefit is a clear
distinction between event handling and database activities.

Trigger definitions A trigger defined in a front-end language, such as SQL or
rule-language, can be either translated into Monet Interface Language (MIL)
constructs or a Monet Extension Language (MEL) module. We have opted for
the former, i.e. provision for trigger concept within MIL, because it supports
ease of experimentation at a slight overhead in execution speed.

Monet trigger definitions are abstractions, much like procedures. A trigger
definition consists of a formal parameter list, an event expression and an action
part. The action part is a sequential or parallel MIL statement block. Since MIL
is a computationally complete programming language, its provides for a rich
environment to construct and experiment with different active applications.

The alternative is to use the Monet Extension Language which supports
dynamic linkage of arbitrary C-code with the system kernel. Although extremely
powerful, this interface is not meant for casual users without experience in C-
programming or limited understanding of the Monet internals. Yet, if need arises,
the trigger can be (hand-) compiled to remove interpretation overhead and go
for speed.

Trigger execution model Trigger execution encompasses decisions on two is-
sues: identification of fireable triggers and the effect on the process thread raising
the event(s). A naive approach is to store the event in the pool and let a separate
monitor process inspect the pool repeatedly for eligible combinations. Although
this increases parallelism (given multiple CPUs), it also leads to many process
switches and dependency on the process priority scheme. Instead, we have chosen
for a direct call of the TEM whenever an event is raised. The pool is then in-
spected and trigger instances are scheduled for execution accordingly. The event
is stored in the event_pool otherwise.



The execution model of trigger, i.e. what happens with the thread of control
causing the event, differs considerably between systems. Many models differen-
tiate between immediate and deferred execution. In SAMOS the event may cause
instances to be executed immediately, effectively suspending the main thread
of control. In Starburst the event leads to a delayed procedure call. Once exe-
cuted at the transaction boundary, they block the main thread of control until
active behavior has come to rest®. Both solutions are influenced by the system
architecture and impose limitations on the active behavior that can be modelled.

We assume that most event expressions are rather simple and that deferred
execution semantics can be modelled in the rule language (compiler) using im-
mediate mode of execution and availability of low-level queue management op-
erations. Therefore, all instances raised by an event are scheduled for parallel
execution and the main thread of control awaits their termination. Deferred
mode can be realized using an event that blocks instances from firing until the
transaction boundary is reached. Detached mode is obtained by using the Monet
primitives to install (and activate) MIL commands and their dependencies in the
request queue explicitly.

In the next section we summarize the events and triggers semantics for Monet.
Their formalization is beyond the scope of this paper. The architectural overview
of the components involved is shown in Figure 2.
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3 attachment procedures can be used to realize immediate actions.



3 Monet Event Model

Events are classified into primitive -, time -, and abstract- events. They are
identified by a unique symbolic name and an internal event number administered
in a user-readable Monet table.

Primitive events detectors are ’hardwired’ into the Monet kernel. In particu-
lar, all built-in MIL commands raise an event upon entry and return from their
body. Since event detection is the potential source of performance degradation,
their event numbers are fixed at compilation time to avoid table lookups. Their
symbolic name is a concatenation of the command name and Fntry or Fxit. They
can be used within the MIL scripts.

Time events are generated within the kernel using the clock interrupt mech-
anism of the underlying operating system. An event can be raised relative to the
current time with a granularity of about 10 ms. Absolute timer events go off at
a specific date and time provided the system is running at that moment.

Abstract events are introduced by the user using an event <id> command;
they can be subsequently used like any other event. The abstract event should be
uniquely identifiable by its name within the context of the user session. Unlike
primitive and time events, an abstract event is explicitly raised using the notify
command in user code.

An event record carries as little data as possible. It merely designates a state
change. The event record contains the internal event number and possibly a
single atomic value. For example, upon deletion of an entry from a table C' the
MIL interpreter executes the command notify (C, deleteEzit). What has been
deleted is not part of the event record, but part of the database state itself. The
trigger body can use the command C.delta to extract this information from the
database.

The events of interest are collected in a single global event pool, called
tem_pool, represented by a user-readable table. An event is added if-and-only-if
it passes a hash-based subscription filter, i.e. there is at least on trigger instance
with expressed interest. Otherwise the event is considered useless and ignored.
The event pool is discarded when the server is stopped.

4 Monet Trigger Model

A trigger is processed in three staged. First, it is defined and administered in a
user-specific trigger table. Second, an instantiation is created to watch for the
events to occur. Third, the body is scheduled for execution when the events
appear in the event pool. These phases are described in more detail below.

Trigger definitions The trigger definition is aligned with the procedural ab-
straction mechanism of the Monet interface language to provide for templates of
active behavior. A trigger definition consists of a header (trigger name(arg....)),
an event expression (on term,...) , and an action. The header is a list of formal



arguments to specialize event expression and their action. The action is a MIL
statement block.

The event expression is a conjunctive boolean expression over event terms.
A term obeys the format N or O.N where O denotes a variable and N an event
name. Both O and N may be a formal parameter. A term is optionally negated
with ~ to require absence of the designated event in the pool. The conjunction
and negation operators provides the computational power to model first-order
formulas over event pools. Disjunctions merely require expression normalization
and replication of the trigger action to obtain a trigger family.

A rationale for this approach is that we expect most triggers to use the
objects mentioned in the event expression. Then a disjunctive expression would
often imply further analysis within the body to determine what action to be
taken. The user then better separates the trigger bodies and encapsulate the
common part in a separate routine. Such transformations can be hidden from
the user with an ECA or rule compiler.

Trigger definitions are stored in the table <wusr>_triggers. It is initialized
with the triggers defined by the database administrator in the database prelude
file.

For example, the trigger below defines a cascading insert from any table S into
D. The term S.insert Exit becomes true when the command notify(insert Ezit,S)
has been executed by the Monet interpreter. The second term illustrates event
negation; it prohibits execution of the trigger body when an error has also oc-
curred. It is raised by the command notify(error Exzit). Finally, an instance is
created to propagate updates on the employee table to a back-up table.
trigger cascade(D, S)
on S.insertExit, ~errorExit

T:= S.alpha();
if(T.count > 0) D.insert(T);
}

cascade(emp,empBackup);

Trigger enabling A trigger becomes enabled by ’calling’ it using actual argu-
ments to look after specific event combinations. This ’call’ is handled by the
Trigger Event Monitor, which enters it into a table of active trigger instances
tem_active. The instance remains there until it becomes disabled using the dis-
able command.

A novelty is to use an admission policy, which determines for each ’call’
whether the state of the event pool on which it is to fire can be reached at
all. Otherwise, the ’call’ is rejected as being not satisfiable. Likewise, a ’call’ is
refused if it implicitly disables existing triggers. The admission policy routine
can be refined by the user.

For example, consider the event expressions "on A,~B” and "on B,~A”, i.e.
a trigger instance fires whenever the A or B event appears exclusively. Further-
more, assume that the event pool is analysed after each event occurrence. Then



extension with the rule ”on A ;B” becomes meaningless, because this state can
not be reached.

Trigger firing Each trigger instance behaves like a procedure call (with its
own scope of control) whose body is (re-)scheduled for execution when its event
expression is satisfied by the event pool. The fireable instances are selected upon
arrival of the each event and all their actions are scheduled for execution. This
leads to an immediate E-A coupling mode. The user can subsequently switch
to decoupling mode explicit scheduling the main part of the action separately.
using the MIL request queue management primitives.

In line with all Monet operations, the trigger body emits the signals <trigger> Entry
and <trigger> Fzit. The object associated with the event is the first argument
of the trigger call. They can be used to serialize execution of different triggers
and to differentiate among events.

For example, assume that after the cascade operation a statistics table should
also be updated. This scheduling order is achieved by the event term that the
trigger instance cascade has finished. The parameter D binds with the object of
interest. Note that the original events causing cascade to fire have already been
removed from the pool.
trigger statistics(D)
on D.cascadeExit

{

statent.replace(D,D.count);
statavg.replace(D,D.average);

}

statistics(empBackup);

5 Higher Order Semantics.

The trigger mechanism described is the target language for compiling more com-
plex ECA-rules. In this section we illustrate how enriched models can be com-
piled into these primitives using three prototypical examples: incremental query
evaluation for rule processing, history information to control trigger activation,
and transaction management.

Incremental conditions Active models permit arbitrary (existential) queries
to control their execution where the query has access to a) the current state; b)
the current state and transition information; and c¢) the current state, transition
information, and transaction parameters. The Monet active component supports
a) only, because limited information is retained about the context in an event
record. Therefore, the ECA-rule compiler should generate code to support the
other dimensions.

Simple state transition information is already maintained by the underlying
BAT implementation. The proposed additions and deletions since the transaction



start can be obtained using the commands alpha and delta, respectively. This
feature can be used to maintain a discrimination network [7].

This discrimination network can be produced by an ECA compiler front-
end, which produces triggers to collect and propagate information through the
network based on the update events. An illustrative and complete algorithm
is described in [4], which optimizes incremental query processing by balancing
storage and re-construction cost for TREAT and A-TREAT networks.

Here we focus on their mapping to trigger definitions and instances. To il-
lustrate we derive the triggers for the simplified rule A(x,a),B(x,b) — C(x,c).
This rule requires two inserted-memory nodes (n1, n2) and a single beta-memory
node (pl). The former is captured by the amemory trigger skeleton below. It
reacts to an insertion event. The body requests the elements inserted, selects
those of interest (>=C), and inserts the result into N. Similar, bmemory reacts
to insertions on precisely one operand. It determines the x-values to be prop-
agated to N using a semi-join over the delta of C1. The BAT-loop operation
finally updates the container N. Two instantiations are needed to cope with
all possible update combinations. Note that the TREAT network components
merely require two trigger abstraction, while the actual network can be built out
of their instantiation.
trigger amemory(C, Container, Value)
on Container.insertExit
{ C.insert(Container.alpha.select(Value));}

trigger bmemory(N,C1,C2)
on Cl.insertExit
{

7 := semijoin(C2,C1.alpha));

7 @ batloop() { N.insert($1,”c”);}
}
nl := new(int,str); # create the place holders
n2 := new(int,str);
t1 := amemory(nl, A,”a”); # propagation triggers
$2 := amemory(n2, B,”b”);
pl:= new(int,str); # join place holder
bmemory(pl, nl, n2); # propagation triggers
bmemory(p1, n2, n1);

Delayed notification The second enrichment considered here is an event his-
tory mechanism. The Monet kernel does not maintain an event history, because
its semantic is highly dependent on the envisioned application domain. Instead,
these policies are better compiled into trigger families using database objects for
state administration. In particular, it supports triggers that fire after a specific
number of events have been received. The Monet trigger abstraction capturing
this semantics is shown below. It counts the events and generates a new event
when the high- water mark is reached. The counter is a variable local to the



trigger instance and reset immediately.
trigger count(E, C, N, EventNew)

on E
{if (C >= N) { notify(EventNew); C := 0; }
else C := C +1;

}

countExit(errorExit, 0, 3,fatal);

Transaction coupling modes Many systems couple trigger activation and
their scope of control to the transaction responsible for satisfying their event
and query condition. The basis for transaction-based triggers is to support the
concept at the user interface, i.e. clients indicate the transaction begin, abort,
and commit explicitly. A built-in event makes them visible to the trigger moni-
tor, but it also requires the transactions primitives to cooperate with the TEM.
For example, the commit operation in the kernel should wait for the last trans-
action event to be handled.

The Monet solution is based on two properties. First, postponement of the
trigger firing to transaction commit simply requires a test for the commitEntry
or commitEzit event to appear in the pool. This effectively means that they
occur as terms in (all) the event expressions. Second, the event pool is a user-
readable structure and applications can postpone continuation unto a wait event
expression over it becomes satisfied. This way synchronization of parallel actions
can be realized.

6 A Performance Metric

The performance of the active component has been measured to isolate the
bottlenecks in our architecture as early as possible. Performance depends on the
following factors: raw database processing, event detection, event analysis, and
trigger instantiation and activation [6]. Although each issue can be analysed in
isolation by simulation and analytical modelling, we have implemented a fully
functional trigger system and measured the combined effect. This way, we avoid
early bias by the perceived performance gains of sophisticated algorithms that
do not significantly contribute to the total system responsiveness.

Our experiments have been chosen such that re-implementation on other
active database system is feasible. Yet, the implementation makes heavy use of
the database structures and kernel operations. A low-level profiler has been used
to squeeze the last cpu cycles.

The evaluation platform consists of a Silicon Graphics Indigo 2 workstation
with R4400 processor running at 200 Mhz, 1 Mbyte secondary cache and 256
Mb of memory. The performance experiments have been conducted with the
Software Testpilot[9], a performance assessment tool developed at CWI.

The Countdown experiment The first experiment determines the baseline
for active behavior, namely handling a single (abstract) event and subsequent



firing of a single trigger. To deal with the granularity of the system clock, the
experiment is modelled as a trigger loop where a variable is decremented until
it becomes zero. The condensed Monet code for the abstraction and creation of
an instance of 100 cycles is shown below. The loop is started using an explicit
notification of the abstract event down.

The performance results are shown in Figure 3 with all times measured in
milliseconds wall-clock time. The definition and instantiation consumes about
3 ms., which is spent on parsing and compilation to an internal format. The
cycle time is largely determined by the cost to schedule the trigger body and its
subsequent interpretation. Each cycle takes less than 0.2 ms. Detailed analysis
showed that the actual cost to be attributed to active behavior is less than
0.05ms. Initial runs helped us in detecting bad resource management, which
lead to non-linear behavior.
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Fig. 3. The Countdown experiment

trigger countdown(N)

on down

{ if(ent <N){
cnt 1= cnt+1;
notify(down);

b}

cnt := 0

countdown(100);

notify(down);

The Dominoes Experiment The second experiment is an analogy of a domino
game. The game consists of two phases: setting up the dominoes and pushing the
first such that one after the other they fall. The simulated dominoes are trigger
instances whose sole action involves raising an event for the next stone.

The purpose of this experiment is to determine whether the implementation
can quickly isolate a firable instance. It has been used to assess the effectiveness
of the hash-filter against our preliminary linear event expression evaluator.



The Monet code for both phases is shown below. The trigger dominoes en-
ables a trigger for each stone which takes a constant time of about 0.4 ms /stone.
As shown in Figure 4 the cycle time is also constant (ca. 0.22 ms), because there
is exactly one event for each trigger instance. It proved that our hashfilter im-
plementation was effective over the range studied.

tunbl e/ cnt
0. 34

tunbl e
2504

0. 28+ —

2001 J—
0. 26

1504
0. 24+

1001 0. 221

50+ 0.2

0

0.18

cnt . cnt
0 200 400 600 800 1000 0 200 400 600 800 1000

Fig. 4. The Dominoes experiment

trigger stone(N)
on N.tumble
{ notify(N+1, tumble); }
trigger dominoes(N)
on setupDomino
{ if(ent <N){
cnt := cnt + 1;
stone(cnt);
notify(setupDomino);
P
dominoes(100);
notify(0, tumble);

The Pyramid Experiment To increase both the number of trigger instances
and the number of events awaiting in the pool for consumption we designed the
pyramid experiment. In the construction phase a simple binary tree of trigger
instances is constructed, such that each element awaits for a private de-blocking
event and an event generated by its parent. The private event is immediately
raised, such that after pyramid construction there are as many events in the pool
as there are active triggers. The second event encodes the level of the trigger in
the pyramid. The destruction phase then merely involves tumbles the root, which
subsequently fires all triggers in the next layer. This leads to a quickly increasing
workload of trigger actions.

This experiment can be used to demonstrate degradation due to excessive
loads on the system kernel and its ability to handle them in parallel. Further-



more, the effectiveness of the accelerator constructs are tested. The Monet trig-
ger abstractions used to build a Pyramid are shown below. The results of this
experiment - without optimizations- is given in Figure 5.
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Fig. 5. The Pyramid experiment

event destruct, fall;
trigger stone(N,D) on D.fall, N.destruct{
notify(D/2,destruct);

proc pyramid;

proc pyramid(N,D) := {
stone(N,D);
if( D> 0) {
pyramid(N+D,D/2);
pyramid(N-D,D/2);
notify(D, destruct);
}

}

pyramid(4,2);

notify(4,fall);

7 Summary

We have described the core-implementation for active behavior in Monet, a par-
allel DBMS kernel. The key concept exploited is to align active behavior with
procedural abstraction, i.e. trigger abstractions. Trigger enabling then aligns
with ’calling’ the abstraction. Thereafter the trigger action becomes scheduled
for (parallel) execution whenever the event expression can be satisfied. This
conceptual coupling of trigger instances with procedure bodies and its ’'indi-
rect invocation’ through events proved a simple and effective means to model a
wide-range of examples.

A metric has been defined to test progress of the implementation and to
provide a guidance to the ECA compiler writers. The performance figures show



that Monet can efficiently support coarse grain active behavior. We intend to
further study the impact of parallel triggers. In particular would we like to know

the granularity of the trigger actions to exploit the parallelism offered by the
kernel implementation.
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